Abstract

Studies have provided first detailed data on the chemistry of rock-forming, minor, and accessory minerals of Govorov Guyot volcanic rocks (basalts, trachybasalts, basaltic trachyandesites, and trachyandesites). Some basalt samples bear pargasitic amphibole and clinopyroxene xenocrysts, mantle vein fragments in xenoliths, as well as wehrlite xenoliths, which are remnants of metasomatized oceanic lithosphere. Amphiboles make up a continuous series from pargasite –Mg-hastingsite in wehrlite xenoliths and xenocrysts to Mg-hastingsite–kaersutite end-members in phenocrysts and microlites of basaltic rocks. The discussed issues include the trace element chemistry of Ti-amphibole and clinopyroxene phenocrysts; fractionation of OIB melts; and P-T equilibration of minerals during the formation of mantle and basaltic rocks. Pargasitic amphibole may have crystallized at P-T conditions (2.5–0.6 GPa, 1170–980 °C) corresponding to the spinel facies of peridotite at different depths (73–21 km) in hydrous (6.0–4.5 wt% H2O) silicate mafic melts that percolated through peridotites of the oceanic lithosphere. Ti-amphibole in basaltic rocks crystallized at 1.2–0.4 GPa (40–15 km), and 1060–910 °C from melts containing 8.6–2.6 wt% H2O. As the high-temperature (~1100 °C) basaltic magmas reached chambers at the oceanic crust level (7 to 3 km), the Ti-bearing amphiboles of xenocrysts and phenocrysts became replaced by Ti-magnetite- and/or rhönite-bearing mineral assemblages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call