Abstract
Forestation is widely proposed for carbon dioxide (CO2) removal, but its impact on climate through changes to atmospheric composition and surface albedo remains relatively unexplored. We assessed these responses using two Earth system models by comparing a scenario with extensive global forest expansion in suitable regions to other plausible futures. We found that forestation increased aerosol scattering and the greenhouse gases methane and ozone following increased biogenic organic emissions. Additionally, forestation decreased surface albedo, which yielded a positive radiative forcing (i.e., warming). This offset up to a third of the negative forcing from the additional CO2 removal under a 4°C warming scenario. However, when forestation was pursued alongside other strategies that achieve the 2°C Paris Agreement target, the offsetting positive forcing was smaller, highlighting the urgency for simultaneous emission reductions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.