Abstract
Abstract Atomic oxygen resulting from the dissociation of O2 on Pd(1 1 1) at low coverage was studied in a variable temperature scanning tunneling microscope (STM) in the range from 30 to 210 K. Oxygen atoms, which typically appear as 30–40 pm deep depressions on Pd(1 1 1), occupy fcc hollow sites and form ordered p(2 × 2) islands upon annealing above 180 K. The mobility of the atoms diminishes rapidly below 180 K, with an approximate diffusion barrier of 0.4–0.5 eV. Oxygen atom pairs produced by thermal dissociation of O2 at 160 K occupy both fcc and hcp hollow sites. The atoms travel approximately 0.25 nm after dissociation, and the distribution of pairs is strongly influenced by the presence of subsurface impurities within the Pd sample. At much lower temperatures, the STM tip can dissociate oxygen molecules. Dissociation occurs at sample bias voltages exceeding approximately 0.1 V. Following tip-induced dissociation, the product atoms occupy only fcc hollow sites. Oxygen atoms can be manipulated via short range repulsive interactions with the STM tip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.