Abstract

Valence electronic states of benzenethiol (C(6)H(5)SH) and benzeneselenol (C(6)H(5)SeH) in the gas, condensed, and chemisorbed phases were examined by ultraviolet photoemission spectroscopy, metastable atom electron spectroscopy, and first-principles calculations using density functional theory. C(6)H(5)SH is chemisorbed on Pt(111) and Au(111) substrates to form a thiolate (C(6)H(5)S), and C(6)H(5)SeH is bound on Pt(111) substrate to form a selenolate (C(6)H(5)Se). In all cases, chemisorption-induced gap states (CIGSs) appear just below the Fermi level (E(F)) of the substrate, yielding a metallic character around the anchor S and Se atoms. However, the local density at E(F) decreases considerably from the anchor atom to the benzene ring, because strong coupling between benzene π(1e(1g)) and S 3p(or Se 4p) in free molecules is apparently lifted upon chemisorption. In other words, thiolates and selenolates (especially C(6)H(5)S on Au(111)) act as poor mediators of the metal wave functions at E(F), which is closely related to electric conductance in the relevant metal-organic-metal junctions at zero bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.