Abstract

Kampo is a form of traditional Japanese medicine, and its therapeutic strategy has been validated empirically over millennia, mainly in Asia. Kampo therapy aims to holistically prevent and treat disease based on the specific diagnosis Sho (in Japanese), in contrast with modern medical treatment which focuses on a patient's affected parts and local conditions. The medicines formulated using crude drugs derived from natural sources (Kampo formulas) are prescribed for patients according to their specific Sho, and thus the Kampo medication system is very complex. However, our previous study strongly suggested that Kampo medication theory could be explained by chemometrics and informatic approaches [Okada et al. in J Nat Med 70:107-114, 2016]. Here, we studied a group of seven formulas with Bupleurum Root and Scutellaria Root as the principal crude drugs. First, decoctions of the formulas were prepared and their supernatants were analyzed by non-targeted direct infusion mass spectrometry (MS) and principal component analysis, which is a type of unsupervised machine learning. Next, supervised machine learning was used to perform partial least squares modeling of the MS data matrix trained on the patients' constitution of Excess, Deficiency, or Medium between these two states (EDM) in Sho. The results showed that the correlation between the chemical fingerprints obtained by MS analysis and EDM could be modeled well using this approach. This cheminformatics modeling approach successfully interpreted part of the complex Kampo medication system studied using the fingerprints of formulas obtained by MS analysis and was consistent with the predicted Sho.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call