Abstract

The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family, a non-segmented negative-strand RNA virus. This article represents the computer-aided drug design (CADD) approach for identifying drug-like compounds that prevent the MARV virus disease by inhibiting nucleoprotein, which is responsible for their replication. This study used a wide range of in silico drug design techniques to identify potential drugs. Out of 368 natural compounds, 202 compounds passed ADMET, and molecular docking identified the top two molecules (CID: 1804018 and 5280520) with a high binding affinity of −6.77 and −6.672 kcal/mol, respectively. Both compounds showed interactions with the common amino acid residues SER_216, ARG_215, TYR_135, CYS_195, and ILE_108, which indicates that lead compounds and control ligands interact in the common active site/catalytic site of the protein. The negative binding free energies of CID: 1804018 and 5280520 were −66.01 and −31.29 kcal/mol, respectively. Two lead compounds were re-evaluated using MD modeling techniques, which confirmed CID: 1804018 as the most stable when complexed with the target protein. PC3 of the (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) was 8.74 %, whereas PC3 of the 2′-Hydroxydaidzein (CID: 5280520) was 11.25 %. In this study, (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) unveiled the significant stability of the proteins' binding site in ADMET, Molecular docking, MM-GBSA and MD simulation analysis studies, which also showed a high negative binding free energy value, confirming as the best drug candidate which is found in Angelica archangelica which may potentially inhibit the replication of MARV nucleoprotein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.