Abstract
Cu X-ray absorption edge features of 19 Cu(I) and 40 Cu(II) model complexes have been systematically studied and correlated with oxidation state and geometry. Studies of Cu(I) model complexes with different coordination number reveal that an 8983-8984-eV peak (assigned as the Cu 1s ..-->.. 4p transition) can be correlated in energy, shape, and intensity with ligation and site geometry of the cuprous ion. These Cu(I) edge features have been qualitatively interpreted with ligand field concepts. Alternatively, no Cu(II) complex exhibits a peak below 8985.0 eV. The limited intensity observed in the 8983-8985-eV region for some Cu(II) complexes is associated with the tail of an absorption peak at approx. 8986 eV which is affected by the covalency of the equatorial ligands. These models studies allow accurate calibration of a normalized difference edge procedure which is used for the quantitative determination of Cu(I) content in copper complexes of mixed oxidation state composition. This normalized difference edge analysis is then used to quantitatively determine the oxidation states of the copper sites in type 2 copper-depleted (T2D) and native forms of the multicopper oxidase, Rhus vernicifera laccase. The type 3 site of the T2D laccase is found to be fully reduced and stable tomore » oxidation by O/sub 2/ or by 25-fold protein equivalents of ferricyanide, but it can be oxidized by reaction with peroxide. The increase in intensity of the 330-nm absorption feature which results from peroxide titration of T2D laccase is found to correlate linearly with the percent of oxidation of the binuclear copper site.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.