Abstract

In this article, the catalytic activity of titania-supported gold nanoparticles (Au/TiO2) was studied for the selective oxidation of amines into nitroso compounds using hydrogen peroxide (H2O2). Gold nanoparticles deposited on Degussa P25 polymorphs of titania (TiO2) have been found to promote the selective formation of a variety of nitroso arenes in high yields and selectivities, even in a large-scale synthesis. In contrast, alkyl amines are oxidized to the corresponding oximes under the examined conditions. Kinetic studies indicated that aryl amines substituted with electron-donating groups are oxidized faster than the corresponding amines bearing an electron-withdrawing functionality. A Hammett-type kinetic analysis of a range of para-X-substituted aryl amines implicates an electron transfer (ET) mechanism (ρ=−1.15) for oxidation reactions with concomitant formation of the corresponding N-aryl hydroxylamine as possible intermediate. We also show that the oxidation protocol of aryl amines in the presence of 1,3-cyclohexadiene leads in excellent yields to the corresponding hetero Diels–Alder adducts between the diene and the in situ formed nitrosoarenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call