Abstract

The thermal decomposition of vinylacetylene (C4H4) was studied behind reflected shock waves using both a single-pulse method (reaction time between 0.8 and 3.3 ms) and a time-resolved UV-absorption method (230 nm). The studies were done over the temperature range of 1170–1690 K at the total pressure range of 1.3–2.3 atm. The mechanism was used to interpret both the early and late stages of vinylacetylene decomposition at the high temperatures. It was confirmed that C4H4 dissociation proceeded through the following three channels. The rate constant expression of reaction (1) was determined as k1 = 6.3 × 1013 exp(−87.1 kcal/RT) s−1. The rate constants of the succeeding reactions (chain reaction, C4H4 + H i-C4H3 + H2 and C4H4 + H C2H2 + C2H3 and decomposition reactions of free radicals, i-C4H3 + M C4H2 + H + M) were confirmed or estimated. © John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.