Abstract

The surface photovoltage signals and the associated relaxation times generated by a laser pulse at the surface depletion layers of anthracene (0.8 μV, 5.6 msec), tetracene (12. μV, 10.0 msec), and pentacene (17.5 μV, 20.0 msec) appear to vary with the increasing amount of electron delocalization. As expected, the photovoltage of these materials depends logarithmically on light intensity until a saturation value corresponding to the complete energy band flattening at the surface is achieved, and this energy band bending is larger for pentacene than it is for tetracene. The photovoltage signal is observed to decay exponentially following the laser pulse with a relaxation time that is independent both of the wavelength and intensity of the light. It is established that this is in agreement with theoretical predictions based on a simple model involving the recombination of the photoinjected charge. The photovoltage spectral dependence of all three polyarenes have maxima which correspond to maxima in the corre...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.