Abstract

The rotational Zeeman effect has been studied for 8 low-J rotational transitions in magnetic fields between 1.9 and 2.4 Tesla. The observed susceptibility anisotropies and molecular g-values have been used to derive the molecular electric quadrupole moments and vibronic ground state expectation values for the electronic second moments. The observed out-of-plane quadrupole moment is discussed with reference to an additivity scheme proposed earlier. The observed out-of-plane component of the molecular magnetic susceptibility tensor is in excellent agreement with the value predicted earlier from the CNDO/2-π-electron density alternation at the ring atoms

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.