Abstract
The thermal decomposition of ethylbenzene has been investigated behind reflected shock waves over the temperature and pressure ranges of 1350–2080 K and 0.25–0.5 atm using a 1.6% C8H10 Ne mixture. Major products of the pyrolysis are C7H8, C7H7, C6H6, C4H2, C2H4, C2H2, and CH4; C8H8 appears throughout the temperature range as a minor product. Comparison of the product profiles obtained by time-of-flight mass spectrometry and the results of model calculations strongly supports the initiation step of β CC bond homolysis for C8H10 dissociation. A 51 kinetic step reaction mechanism with 24 species was formulated to model the temperature and time dependence of the major products observed in our experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.