Abstract

Results obtained over the past decade concerning the introduction of the fluorine atom into carbohydrate molecules, either by nucleophilic substitution or electrophilic addition reactions, are summarised. The first section mainly deals with the triflate/fluoride tandem sequence and the DAST-reaction. In the discussion, emphasis is given to the dependency of the reaction course on the stereochemical and protecting group features. Possible reaction pathways are direct substitution (with inversion or retention of configuration), rearrangement (combined with substitution and inversion of configuration at both of the centres involved) and elimination. Based on the assumption of cyclic transition states or transient intermediates (formed through participation of neighbouring groups), far-reaching mechanistic generalisations were made. On this basis, isolated examples from the literature, which are not in accordance with these generalisations, are specifically brought to attention. Results from the recently introduced reaction of safe and easy to handle N-F fluorinating agents with glycals are also reported. This approach allows the simple and stereoselective access to a series of 2-deoxy-2-fluoro aldopyranoses, as well as the synthesis of various C-1-substituted derivatives by an easy one-pot reaction. However, the same method applied to furanoid glycals is rather poor with respect to stereoselectivity. Finally, considerations on the importance of fluorine-specific reactions of the S(N)-type in related fields of organic synthesis are made.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call