Abstract

Higher hydrocarbon formation during the pyrolysis of ethylacetylene in a microjet reactor was studied by vacuum-ultraviolet photoionization time-of-flight mass spectrometry. At the wavelength employed, this ionization technique allows for the simultaneous detection of both stable and intermediate polyatomic species with ionization potentials below 10.49 eV, including most hydrocarbons with two or more carbon atoms. Minimal fragmentation simplifies the determination of parent species and allows identification of probable reaction pathways involving hydrocarbon radicals as well as stable species. The pyrolysis of ethylacetylene was carried out in the fast-flow microjet reactor (residence times 1-2 ms) at temperatures from 300 to 1,600 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.