Abstract

The combination of experiments and computations reveals unusual features of stereoselective Rh(I)-catalyzed transformation of propargyl vinyl ethers into (E,Z)-dienals. The first step, the conversion of propargyl vinyl ethers into allene aldehydes, proceeds under homogeneous conditions via a “cyclization-mediated” mechanism initiated by Rh(I) coordination at the alkyne. This path agrees well with the small experimental effects of substituents on the carbinol carbon. The key feature revealed by the computational study is the stereoelectronic effect of the ligand arrangement at the catalytic center. The rearrangement barriers significantly decrease due to the greater transfer of electron density from the catalytic metal center to the CO ligand oriented trans to the alkyne. This effect increases electrophilicity of the metal and lowers the calculated barriers by 9.0 kcal/mol. Subsequent evolution of the catalyst leads to the in situ formation of Rh(I) nanoclusters that catalyze stereoselective tautomerizatio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.