Abstract

The approximate rates and stoichiometry of the reaction of excess 1,3,2-biphenyldioxaborepin [2,2'-biphenoxyborane (BPB)] with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, hydride to compound being 4 : 1, room temperature) was examined in order to define the characteristics of the reagent for selective reductions and compare its reducing power with those of other substituted boranes. The results indicate that BPB is unique and the reducing power is much stronger than that of other dialkoxyboranes, such as catecholborane and di-s-butoxyborane. BPB reduces aldehydes, ketones, quinones, lactones, tertiary amides, and sulfoxides readily. Carboxylic acids, anhydrides, esters, and nitriles are also reduced slowly. However, the reactions of acid chlorides, epoxides, primary amides, nitro compounds, and disulfides with this reagent proceed only sluggishly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.