Abstract

The transition-metal-catalyzed direct C–H bond fluorination is an attractive synthetic tool toward the preparation of organofluorines. While many methods exist for the direct sp3 C–H functionalization, site-selective fluorination of unactivated sp3 carbons remains a challenge. Direct, highly site-selective and diastereoselective fluorination of aliphatic amides via a palladium-catalyzed bidentate ligand-directed C–H bond functionalization process on unactivated sp3 carbons is reported. With this approach, a wide variety of β-fluorinated amino acid derivatives and aliphatic amides, important motifs in medicinal and agricultural chemistry, were prepared with palladium acetate as the catalyst and Selectfluor as the fluorine source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call