Abstract
Highly atom-efficient oxidation of sulfides into sulfones under solvent- and catalyst-free reaction conditions using a 30% aqueous solution of H2O2 at 75 °C is reported. A structurally diverse set of phenyl alkyl-, phenyl benzyl-, benzyl alkyl-, dialkyl-, heteroaryl alkyl- and cyclic sulfides were transformed into sulfones regardless of the aggregate state and electronic nature of the substituents. In spite of the heterogeneous reaction mixtures throughout the work, no difficulties with stirring and reaction progress were noted. In numerous cases, only 10 mol% excess of H2O2 was used, thus contributing considerably to the high atom economy of the process. Some solid substrates required a variable excess of hydrogen peroxide; however, the reactions were performed strictly without organic solvents. The transformation was demonstrated to be amenable for scale-up with both liquid and solid sulfides. In addition, isolation and purification of the crude products can be simply done with only filtration and crystallization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.