Abstract

Analyses of trace biologically essential or toxic ionic compounds found in the environment are very important. However, the lack of sensitivity and interference caused by coexisting components are often serious problems. To determine trace levels of metal ions without the above problems, new preconcentration and analytical methods have been developed. Firstly, three methods for the selective preconcentration of metal ions are shown below: 1) 3-Chloropyridazine-6-carbohydrazide was immobilized on glass beads supports to be used as a column packing material. Multi-metal ions were concentrated on the column and eluted selectively with several buffers and hydrochloric acid. The eluate was analyzed off-line by flame atomized-atomic absorption spectrometry (AAS). This method was able to determine sub-ppb levels of cupper- and cadmium-ions in environmental samples. 2) Salicylideneamino-2-thiophenol was immobilized on the supports. Aluminum ion was concentrated selectively on the column and eluted with nitric acid. The eluate was analyzed off-line by flameless-AAS or on-line by flow injection analysis using pyrocatechol violet for a post-column colorimetric reagent. These methods were able to determine ppb-ppt levels of aluminium in environmental samples and were suitable for its state-analysis. 3) Bathocuproinesulfonic acid was immobilized on the supports. Copper ion was concentrated selectively on the column and eluted with nitric acid. The eluate was analyzed on-line by flow injection analysis using bathocuproinesulfonic acid. This method was able to determine sub-ppb levels of copper in environmental samples. On the other hand, to analyze simultaneously trace metal ions and anions, capillary electrophoresis was performed using ethylenediaminetetraacetic acid as an electrolyte component. Simultaneous determination of several ions in mineral waters was achieved by the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.