Abstract

We report the synthesis of a series of aryl- or alkyl-substituted 2-mercaptobenzothiazoles by direct thiolation of benzothiazoles with aryl or alkyl thiols via copper-mediated aerobic C-H bond activation in the presence of stoichiometric CuI, 2,2'-bipyridine and Na(2)CO(3). We also show that the approach can be extended to thiazole, benzimidazole, and indole substrates. In addition, we present detailed mechanistic investigations on the Cu(I)-mediated direct thiolation reactions. Both computational studies and experimental results reveal that the copper-thiolate complex [(L)Cu(SR)] (L: nitrogen-based bidentate ligand such as 2,2'-bipyridine; R: aryl or alkyl group) is the first reactive intermediate responsible for the observed organic transformation. Furthermore, our computational studies suggest a stepwise reaction mechanism based on a hydrogen atom abstraction pathway, which is more energetically feasible than many other possible pathways including β-hydride elimination, single electron transfer, hydrogen atom transfer, oxidative addition/reductive elimination, and σ-bond metathesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call