Abstract
Abstract Two different systems have been examined as potential sources of aluminum nitride, an important electronic and structural ceramic material. Cyclic organoaluminum amides obtained as intermediates in the thermolysis of trialkylaluminum : ammonia Lewis acid-base complexes have been used to obtain AlN powder and as precursors for the chemical vapor deposition of AlN films. The structures of two of these intermediates were determined by single-crystal XRD and the kinetics and thermodynamics of their formation and thermal decomposition reactions were also studied. The second system employs ethylenediamine as the Lewis base in combination with the R 3 Al (R = Me, Et) compounds. A 2:1 ratio of Et 3 Al with en yields a hydrocarbon-soluble, polymeric amide on thermolysis, which can be used to prepare AlN films by solution coating followed by pyrolysis in NH 3 . Lower proportions of R 3 Al to en, on thermolysis, lead to the formation of R m Al(en-2H) n cluster species that contain 5- and 6-coordinated Al atoms chelated and bridged by en-2H ligands. On further heating, these cluster species apparently go on to form cross-linked, insoluble, polymeric networks through condensation reactions involving the multiple N-H and R-Al groups on the periphery of the cluster molecules. The structures of two of these novel Al-en cluster compounds were determined by single-crystal XRD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.