Abstract

Palladium thiolato complexes [(L)Pd(R)(SR‘)], within which L is a chelating ligand such as DPPE, DPPP, DPPBz, DPPF, or TRANSPHOS, R is a methyl, alkenyl, aryl, or alkynyl ligand, and R‘ is an aryl or alkyl group, were synthesized by substitution or proton-transfer reactions. All of these thiolato complexes were found to undergo carbon−sulfur bond-forming reductive elimination in high yields to form dialkyl sulfides, diaryl sulfides, alkyl aryl sulfides, alkyl alkenyl sulfides, and alkyl alkynyl sulfides. Reductive eliminations forming alkenyl alkyl sulfides and aryl alkyl sulfides were the fastest. Eliminations of alkynyl alkyl sulfides were slower, and elimination of dialkyl sulfide was the slowest. Thus the relative rates for sulfide elimination as a function of the hybridization of the palladium-bound carbon follow the trend sp2 > sp ≫ sp3. Rates of reductive elimination were faster for cis-chelating phosphine ligands with larger bite angles. Kinetic studies, along with results from radical trapping re...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.