Abstract
A library of phosphite-pyridine ligands L1–L12 a–g has been successfully applied for the first time in the Pd-catalyzed allylic substitution reactions of several di- and trisubstituted substrates by using a wide range of C, N and O nucleophiles, among which are the little studied α-substituted malonates, β-diketones, and alkyl alcohols. The highly modular nature of this ligand library enables the substituents/configuration at the ligand backbone, and the substituents/configurations at the biaryl phosphite moiety to be easily and systematically varied. We found that the introduction of an enantiopure biaryl phosphite moiety played an essential role in increasing the versatility of the Pd-catalytic systems. Enantioselectivities were therefore high for several hindered and unhindered di- and trisubstituted substrates by using a wide range of C, N and O nucleophiles. Of particular note were the high enantioselectivities (up to>99 % ee) and high activities obtained for the trisubstituted substrates S6 and S7, which compare favorably with the best that have been reported in the literature. We have also extended the use of these new catalytic systems in alternative environmentally friendly solvents such as propylene carbonate and ionic liquids. Studies on the Pd-π-allyl intermediates provide a deeper understanding of the effect of ligand parameters on the origin of enantioselectivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.