Abstract

Wood materials incorporating new properties are of great interest, especially for advanced applications such as sustainable optics and photonics. In this work we describe a wood functionalization approach, comprising the incorporation of artificial chemiluminescent systems (phenyl oxalate ester‑hydrogen peroxide-fluorophore, and luminol-ferricyanide), resulting in light-emitting wood. By a detailed characterisation of the light emission features we point out the complex interaction between wood scaffold and chemiluminescent systems, especially the quenching effect of wood extractives (for the TCPO-H2O2-fluorophore system) and lignin (for the luminol-ferricyanide system). Moreover, we take advantage of the intrinsic anisotropic porosity and capillarity of wood tissue to study the chemiluminescent front propagation. Our results may inspire the development of novel light-emitting wood materials for a variety of applications, from fundamental studies of water uptake in wood to sensors and even design elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call