Abstract
Serious adverse drug reactions of gentamicin (GM) significantly limit its clinical use, thus there is an urgent demand to develop reliable strategies to detect its concentration. In this study, we have developed a novel highly sensitive and portable lateral flow immunoassay (LFIA) based on CoFe PBAs/WS2 nanozyme mediated chemiluminescence (CL) and photothermal (PT) dual-mode POCT biosensor for the detection of GM, which successfully combines sensitive laboratory analyses with portable in situ analyses in the field. In this proof-of-principle work, the dynamic detection ranges of CL-LFIA and PT-LFIA mode were 1 pg mL−1 to 100 ng mL−1 and 50 pg mL−1 to 100 ng mL−1 with the limits of detection of 0.33 and 16.67 pg mL−1, respectively. The whole detection of CL-LFIA and PT-LFIA could be completed within 15 min and 30 min, respectively. The recoveries of GM spiked into complex matrices including milk, urine, and serum for CL-LFIA and PT-LFIA were 90.94%–109.74% and 94.49%–109.31%, respectively, indicating the reliability and applicability of the dual-mode LFIA in real samples. The dual-mode POCT biosensor could effectively overcome the false problems with improving accuracy and sensitivity, enabling user to precisely detect GM by laboratory analysis or on-site analysis depending on the source condition. Due to the complementary properties of CL-LFIA and PT-LFIA, the developed POCT biosensor can effectively ensure high-performance detection, showing the potential application of accurately detecting drug concentration in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.