Abstract

Herein, a chemiluminescence (CL) biosensor based on CRISPR-Cas12a and cation exchange reaction was constructed to detect the biomarker microRNA-21 (miRNA-21). The rolling circle amplification (RCA) reaction was introduced to convert each target RNA strand into a long single-stranded DNA with repeated sequences, which acted as triggers to initiate the transcleavage activity of CRISPR-Cas12a. The activated Cas12a could cleave the biotinylated linker DNA of CuS nanoparticles (NPs) to inhibit the binding of CuS NPs to streptavidin immobilized on the surface of the microplate, which strongly reduced the generation of Cu2+ from a cation exchange between CuS NPs and AgNO3, and thus efficiently suppressed the CL of Cu2+-luminol-H2O2 system, giving a "signal off" biosensor. With the multiple amplification, the detection limit of the developed sensor for miRNA-21 reached 16 aM. In addition, this biosensor is not only suitable for a professional chemiluminescence instrument but also for a smartphone used as a detection tool for the purpose of portable and low-cost assay. This method could be used to specifically detect quite a low level of miRNA-21 in human serum samples and various cancer cells, indicating its potential in ultrasensitive molecular diagnostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.