Abstract

A novel chemiluminescence (CL) method was proposed for doping water-soluble Mn in ZnS quantum dots (QDs) as CL emitter. Water-soluble Mn-doped ZnS QDs were synthesized by using L-cysteine as stabilizer in aqueous solution. These nanoparticles were structurally and optically characterized by X-ray powder diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), UV-Vis absorption spectroscopy, and photoluminescence (PL) emission spectroscopy. The CL of ZnS QDs was induced directly by chemical oxidation and its ionic liquid-sensitized effect in aqueous solution was then investigated. It was found that oxidants, especially hydrogen peroxide, could directly oxidize ZnS QDs to produce weak CL emission in basic solutions. In the presence of 1,3-dipropylimidazolium bromide/copper, a drastic light emission enhancement was observed which is related to a strong interaction between Cu2+and the imidazolium ring. In these conditions, an efficient CL light was produced at low pH which is suggested to be beneficial to the biological analysis. The CL properties of QDs not only will be helpful to study physical chemistry properties of semiconductor nanocrystals but also they are expected to find use in many fields such as luminescence devices, bioanalysis, and multicolor labeling probes.

Highlights

  • Colloidal semiconductor nanocrystals, better known as quantum dots (QDs), are prospective materials for a wide variety of applications

  • QDs are characterized by a unique set of optical properties that primarily arise from quantum confinement effects [1, 2]

  • In the present study, we introduce a new ionic liquid/copper catalyst on the CL reaction of QDs

Read more

Summary

Introduction

Better known as quantum dots (QDs), are prospective materials for a wide variety of applications. Firstly reported the catalyzed chemiluminescence of luminol in the presence of 1-ethyl-3-methylimidazolium ethylsulfate/copper as catalyst, have provided new avenues to enhance the inherent sensitivity, and expand new applications of this mode of detection [26]. In the present study, we introduce a new ionic liquid/copper catalyst on the CL reaction of QDs. Mndoped ZnS QDs which is one of the classic semiconductor nanocrystals was synthesized in aqueous solution and used as a model to investigate CL properties of QDs as light emitter. The aim is to introduce the beneficial effect of imidazolium ring- based ionic liquids (Figure 1) on signal amplification for the catalyzer of the CL system and to improve the efficiency of nanoparticle CL, which is lower than that of luminol- or bis(2,4,6-trichlorophenyl)oxalate-based systems. The Mn-doped ZnS QDs-H2O2 CL system is applicable for the determination of such compounds

Experimental Section
Results and Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.