Abstract

The spectral distribution for the chemiluminescent oxidation of ammonia with hypobromite is significantly different to that for the oxidation of ammonia with N-bromosuccinimide. Therefore, in contrast to the assumptions of several authors, the action of N-bromosuccinimide is not solely derived from the in situ formation of hypobromite. Neither the oxidation of urea with hypobromite nor the oxidation of urea with N-bromosuccinimide involves an initial hydrolysis of urea to ammonia in the alkaline solution. However, these two reactions lead to a common emitter. The addition of xanthene dyes, such as dichlorofluorescein, enhance the chemiluminescence intensity by energy transfer to the efficient fluorophore, but reaction between the sensitiser and hypobromite can result in a significant increase in the background signal. A list of potential interferences has been compiled; particular attention was paid to guanidino compounds, as the chemiluminescence accompanying the oxidation of this functional group has not been previously discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.