Abstract

Chemiluminescence (CL) detection integrated with a microchip capillary electrophoresis (MCE) system that was fabricated in poly(dimethylsiloxane) was demonstrated for chemical and biochemical analyses. Two model CL systems were involved here: metal ion-catalyzed luminol-peroxide reaction and dansyl species conjugated peroxalate-peroxide reaction. Different strategies based on three chip patterns (cross, cross combining with Y, and cross combining with V) to perform on-line CL detection for MCE were evaluated and compared in terms of sensitivity, reproducibility, and peak symmetry. The chip pattern of cross combining with Y proved to be promising for the luminol-peroxide CL system, while the chip pattern of cross combining with V was preferred for the peroxalate-peroxide system where CL reagent could not be effectively transported by electroosmotic flow. A detection limit down to submicromolar concentrations (midattomole) was achieved with good reproducibility and symmetric peak shape. Successful separation of three metal cations such as Cr(III), Co(II), and Cu(II) and chiral recognition of dansyl phenylalanine enantiomers within 1 min revealed distinct advantages of combining MCE with CL detection for rapid and sensitive analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.