Abstract

Novel hydrogels are often designed to mimic the transport and mechanical properties of natural soft tissue such as ligaments, tendons, intervertebral discs, or to be exploited as scaffold for tissue engineering. Recently, novel hydrogels based on 2-hydroxylethyl methacrylate and fumed silica nanoparticles (5–25% w/w) were synthesized by our group and demonstrated to improve cell adhesion and proliferation. The chemico-physical properties and mechanical behaviour of these new polymers have been studied and are presented in this article. The swelling equilibria in water and water solutions were evaluated in relation to ionic strength and pH. The sorption kinetic estimated through gravimetric analysis showed a diffusive transport behaviour of the hybrid composite materials as of early stages of the process. The elastic modulus was evaluated by Dynamic-Mechanical Analyses and proved to increase with the filler content reaching values compatible with the mechanical characteristics of natural material. This result supports the possibility of future applications of the novel hybrid composite in several fields, in dentistry as dental filling or in systems for the controlled released of drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.