Abstract

AbstractLife cannot exist without water. Appropriate management of water, from the water’s source to its utilization, is necessary to sustain life. Aquatic weeds pose a serious threat to aquatic environments and related eco-environments. Short- and long-term planning to control aquatic weeds is extremely important. Water hyacinth,Eichhornia crassipes(Mart.) Solms, is one of the world’s worst pests with a bad reputation as an invasive weed. In this study we are seeking the possibility of using certain chemicals with a natural background, for controlling water hyacinth since there is a delicate balance that needs to be taken into account when using herbicides in water. Five compounds, namely: acetic acid, citric acid, formic acid, and propionic acid, in three concentrations (10, 15, and 20%) were applied (i.e. as a foliar application under wire-house conditions) and compared with the use of the herbicide glyphosate (1.8 kg ∙ ha−1). All of the five compounds performed well in the control of the water hyacinth. As expected, the efficacy increased as the concentration was increased from 10 to 20%. With formic and propionic acids, the plants died earlier than when the other acids or the herbicide glyphosate, were used. Acetic acid came after formic and propionic acids in terms of efficacy. Citric acid ranked last. Formic acid/propionic acid mixtures showed superior activity in suppressing water hyacinth growth especially at the rate of (8 : 2) at the different examined concentrations (3 or 5 or 10%) compared to the formic acid/acetic acid mixtures. Using the formic acid/propionic acid mixture (8 : 2; at 3%) in the open field, provided good control and confirmed the viability of these chemicals in the effective control of water hyacinth. Eventually, these chemical treatments could be used on water for controlling water hyacinth. In the future, these chemicals could probably replace the traditional herbicides widely used in this regard. These chemicals are perceived as environmentally benign for their rapid degradation to carbon dioxide and water. For maximum efficiency thorough coverage especially in bright sunlight is essential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.