Abstract
In this article, we report a "smart" hydrogel system, which can be remodeled into multiple architectures through dynamic covalent adaptable networks. The topological changes in hydrogel structures yield dynamically tunable properties through the reformation of covalent chemical linkages via amine-thiol scrambling, thiol-thiol exchange, decoupling reaction, and disulfide formation. The stiffness of the hydrogels can be regulated via dynamic covalent bonding, with some hydrogels displaying self-healing and shear thinning properties, as demonstrated by rheological measurements. Significantly, the dramatic structural transformations are achieved under neutral aqueous conditions at room temperature. These "smart" hydrogels show good biocompatibility, which can induce cell growth in two-dimensional cell culture and effectively serve as a scaffold for encapsulating and releasing human mesenchymal stem cells in three-dimensional cell culture. Thus, the developed "smart" hydrogel system holds great potential in biomedical applications such as tissue engineering and cell therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.