Abstract
The provisioning of compound libraries with a high degree of diversity and attractive pharmacological properties is a limiting step in drug development. This study reports the production of highly bioactive sulfated polysaccharides, originally present in a nonsulfated, dormant state in natural sources, and demonstrates their antiviral activity (human cytomegalovirus EC50 values of 2.34–7.77 μg/mL) at a low degree of cytotoxicity. Furthermore, data strongly suggested the inhibition of virus entry as the main mode of antiviral action. Remarkably, the utilized oleum-DMF reagent was able to generate a range of sulfated polysaccharides from various natural sources, possessing varying saccharide compositions, degrees of sulfation (0.4–1.7) and molecular masses (38–94,000 g/mol). Typically, in a matter of minutes, this reagent not only solubilized polysaccharides but also chemically converted their hydroxyl functionality into sulfates. The most active sulfated polysaccharide (EC50 of 2.62 μg/mL) proved to be a 94,000 g/mol branched glucan with sulfates at C-6/C-3,6/C-2,3,6 positions. In conclusion, the important determinants of such compounds' antiviral activity are: (i) degree of sulfation, (ii) molecular mass and (iii) structural features. Thus, our approach offers a huge prospect for the improvement of natural source-derived libraries based on biologically active polysaccharides with diversified chemical profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.