Abstract

The Mars Odyssey Gamma Ray Spectrometer Suite has yielded global chemical information for Mars. In this work, we establish regions of unusual chemical composition relative to average Mars primarily on the basis of Ca, Cl, Fe, H, K, Si, and Th. Using data from Mars Odyssey; the Mars Exploration Rovers; the Mars Reconnaissance Orbiter Imaging; and 3.5 cm and 1.35 cm radar observations from Earth, we examine a chemically striking ≈2.E6 km2 region and find it to overlap significantly with a radar Stealth region on Mars. It is remarkably enriched in Cl and depleted in Fe and Si (along with minor variations in H, K, and Th) relative to average Mars. Surface dust observed at the two rover sites mixed with and indurated by Ca/Mg‐bearing sulfate salts would be a reasonable chemical and physical analog to meter‐scale depths. We describe potential scenarios that may have contributed to the unique properties of this region. The bulk dust component may be an air fall deposit of compositionally uniform dust as observed in situ. Hydrothermal acid fog reactions on the flanks of nearby volcanoes may have generated sulfates with subsequent deflation and transport. Alternatively, sulfates may have been produced by low‐temperature, regional‐scale activity of ground ice–driven brine and/or regional‐scale deposition of acidified H2O snowfall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.