Abstract

We developed a simple fabrication method to prepare a superamphiphobic aluminum surface. On the basis of a low-energy surface and the combination of micro- and nanoscale roughness, the resultant surface became super-repellent toward a wide range of liquids with surface tensions of 25.3-72.1 mN m(-1). The applied approach involved (1) the formation of an irregular microplateau structure on an aluminum surface, (2) the fabrication of a nanoplatelet structure, and (3) fluorination treatment. The chemical stability and mechanical durability of the superamphiphobic surface were evaluated in detail. The results demonstrated that the surface presented an excellent chemical stability toward cool corrosive liquids (HCl/NaOH solutions, 25 °C) and 98% concentrated sulfuric acid, hot liquids (water, HCl/NaOH solutions, 30-100 °C), solvent immersion, high temperature, and a long-term period. More importantly, the surface also exhibited robust mechanical durability and could withstand multiple-fold, finger-touch, intensive scratching by a sharp blade, ultrasonication treatment, boiling treatment in water and coffee, repeated peeling by adhesive tape, and even multiple abrasion tests under 500 g of force without losing superamphiphobicity. The as-prepared superamphiphobic surface was also demonstrated to have excellent corrosion resistance. This work provides a simple, cost-effective, and highly efficient method to fabricate a chemically stable and mechanically robust superamphiphobic aluminum surface, which can find important outdoor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.