Abstract

The structure and chemical states of the Sn/Ge(111) surface are characterized by x-ray standing waves combined with photoemission. For the room temperature square root 3xsquare root 3 phase two chemical components, approximately 0.4 eV apart, are observed for both Sn 3d and 4d core levels. Our model-independent, x-ray standing wave analysis shows unambiguously that the two components originate from Sn adatoms located at two different heights separated vertically by 0.23 A, in favor of a model composed of a fluctuating Sn layer. Contrary to the most accepted scenario, the stronger Sn 3d and 4d components, which appear at the lower binding-energy sides and account for 2/3 of the Sn adatoms, are identified to be associated with the higher Sn position, manifesting their filled valence state character.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.