Abstract

Inspired by the several applications of non-Newtonian materials, the current investigation manages a theoretical analysis of series solutions in MHD flow of micropolar material towards nonlinear stretchable surface. Mathematical modeling is developed through viscous dissipation, mixed convection, chemical reaction and Joule heating. The phenomenon of heat and mass transfer are investigated simultaneously. The technique of local similarity transformation is utilized in order to transform the governing expressions from PDEs into ODEs. The established non-linear expressions have been tackled analytically by means of homotopic concept. The interference influences and the flow aspects are presented in the form of liquid velocity, temperature and concentration fields. The results described here demonstrate that material parameter boosts the velocity and micro-rotation velocity. It is noticed that thermal and concentration fields are higher when Eckert number and destructive chemical reaction parameter are enhanced. Besides this for the verification of the present findings, the results of presented analysis have been compared with the available works in particular situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call