Abstract
A recent study showed that at least 50% of nosocomial infections are due to medical indwelling devices like surgical guides and prosthetics. This amounts to about 2 million patients affected a year. The reason for such statistics is the growth of microorganisms on the surfaces of the medical devices. There have been many attempts to create antimicrobial materials but most materials are unable to hold more than one antimicrobial agent without a secondary process. The study related to antimicrobial material with more than one type of agent is rarely found in literature. Hence, the objective of this project is to produce an antimicrobial material that can hold more than one antimicrobial agent without the need for a secondary process. The material is produced by sulfonating high impact polystyrene (HIPS) and attaching copper and silver ions. The optimum time of sulfonation of the HIPS was determined by the degree of sulfonation and ion exchange capacity. Then, the sulfonated HIPS were loaded with both copper and silver ions at different ratios. The 6-hour sample yielded the highest degree of sulfonation and ionic exchange capacity of 33.7% and 2.57 meq/g, respectively. In future work, the characterization of the 6-hour sulfonated HIPS sample loaded with copper and silver ions at different concentration ratios will be performed using TGA, DSC and FTIR spectroscopy. Lastly, the efficacy of the antimicrobial properties of the sulfonated HIPS will be tested using different bacterial strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.