Abstract

New conducting polyaniline (PANI) nanocomposites that were chemically modified by poly(2-acrylamido-2-methyl-1-propanesulfonicacid) (PMP) and graphene nanoplatelets (GNPs) were prepared via in situ deposition. PMP was first synthesized using GNPs, and aniline hydrochloride monomer was then polymerized in the presence of PMP-GNPs. The nanopolymer composites were characterized, and its structural morphology was analyzed via transmission electron microscopy and scanning electron microscopy. Fourier transformation infrared spectroscopy results indicate a strong interaction between PANI, PMP, and GNPs. To understand the conduction behavior of the composites, temperature-dependent DC electrical conductivity was measured between 295 K and 503 K, and the mechanism of transport properties of the new composites was analyzed by Mott’s variable range of hopping model. The PANI/PMP-GNP showed higher conductivity than pure PANI polymer. The high electrical conductivity of the nanocomposites may be useful in fabricating multifunctional materials in bulk for future technological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.