Abstract

Owing to the extensive use of pesticides in agriculture and the threat posed to the environment and humankind, attention is drawn toward the need for its remediation from various sources, in particular from water. The adsorption characteristics of hydrophobic graphene and its BN doped counterparts are evaluated using DFT methodology, to assess their sensing potential towards notable pesticide molecules (Organophosphate pesticides (OPs) such as chlorpyriphos, parathion, methyl-parathion, and fenitrothion). To accomplish this, various electronic properties such as band structure, DOS, Bader charge analysis, and CDD have been calculated. Interestingly, exothermic interactions (-0.1 eV to −2 eV) have been noted for all the OPs with NB doped single vacancy defect induced graphene surfaces. With an exception of FTN, all the other OPs showed significant changes in the electronic properties of surfaces as apparent from the change in band gap and nature of the band from indirect to direct. The appreciable adsorption energy, higher charge transfer, and notable variation in the band gap are the decisive factors behind the strong interaction exhibited by NB doped surfaces especially dg-(NB-2)2 (except FTN). These findings demonstrate the suitability of NB doped single vacancy defect induced graphene sheets for the detection of the studied OPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call