Abstract
The babassu coconut is a plant very abundant in northeast of Brazil and other countries, and any part of plant and fruit becomes residue. In this study, babassu mesocarp (Orbignya sp) (BM) was chemically modified with phthalic anhydride (BMPA) to increase its solubility in an aqueous medium, and thus facilitate its processing in the form of thin films. The reaction of modification of the babassu mesocarp with phthalic anhydride (PA), obtaining BMPA, was confirmed by FTIR, XRD, TG/DTG, Zeta Potential and SEM analysis, from the differences in the bands of the FTIR spectra, increase in crystallinity, new thermal profile, changes in zeta potential value and morphology, respectively. The thin monolayer films of BM and BMPA were produced by the self-assembly monolayer (SAM) technique, and adsorbed onto conductive glass substrates (tin-doped indium oxide, ITO). The electroactive properties of these thin films were evaluated by cyclic voltammetry (CV). BM exhibited a pair redox pair process of +0.57 V(oxidation) and + 0.19 V (reduction) for BM. In BMPA these redox processes were observed at +0.37 V (oxidation) and 0.24 V vs. ECS (reduction), verifying that both BM and BMPA are electroactive materials that can be used in the construction of sensor platforms, without the necessity of being conjugated with other electroactive materials, such as conductive polymers, metal phthalocyanines, or dyes. Furthermore, under the experimental conditions used, the BMPA presented a more reversible redox process and higher electrochemical stability in comparison to BM. This effect occurs because BMPA has higher solubility in aqueous media, which favors the preparation of films with smaller grain sizes compared to BM films, as observed by Atomic Force Microscopy (AFM). This study showed that BMPA is a new material with potential for applications in electrochemical sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.