Abstract

Predators can have significant nonlethal effects on prey by modifying prey behaviour through chemically mediated interactions. We examined behavioural responses of wood frog (Ranasylvatica) and American toad (Bufoamericanus) tadpoles to both direct and indirect chemical signals associated with a predatory odonate (Anaxjunius). In laboratory trials, tadpoles of both species responded strongly to water conditioned with Anax nymphs by decreasing foraging rates, becoming immobile, and moving away from the stimulus. The responses to water conditioned with starved Anax versus Anax that fed on conspecific tadpoles did not differ significantly; these results suggest that tadpoles rely primarily on direct signals to detect odonates. Rana did not respond to water conditioned with conspecific tissue extracts, while Bufo responded with behaviours that were indistinguishable from those of tadpoles exposed to Anax chemicals. In a field experiment, the responses of R. sylvatica tadpoles to Anax chemicals were similar to those of tadpoles observed in the laboratory. Collectively, our data indicate that tadpoles of both species use chemical cues to assess predation risk from other community members. Tadpoles can selectively distinguish members who pose a threat, and only evacuate food patches or reduce foraging rates when in danger. These behaviours appear to be adaptive and are consistent with the predictions of optimality theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.