Abstract

Double magnetron sputtering (DMS) is an efficient system that is well known because of its precise control of the thin film synthesizing process over any kind of substrate. Here, DMS has been adopted to synthesize BiVO4 films over a conducting substrate (FTO), using metallic vanadium and ceramic Bi2O3 targets simultaneously. The films were characterized using different techniques, such as X-ray diffraction (XRD), UV-Vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and profilometry. The photo-electrochemical analysis was performed using linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) under the illumination of simulated solar light at 1 Sun. The photocurrent density of the sputtered BiVO4 thin films could be improved from 0.01 mA cm(-2) to 1.19 mA cm(-2) at 1.23 V vs. RHE by chemical treatment using potassium hydroxide (KOH). The effect of KOH was the removal of impurities from the grain boundaries, leading to a more porous structure and more pure crystalline monoclinic BiVO4 particles. Such variations in the microstructure as well as the improvement of the charge transfer properties of the BiVO4 film after the KOH treatment were confirmed and studied in depth by EIS analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.