Abstract

We report a first-principles based study of mesoscopic quantum transport in chemically doped graphene nanoribbons with a width up to 10 nm. The occurrence of quasi-bound states related to boron impurities results in mobility gaps as large as 1 eV, driven by strong electron-hole asymmetrical backscattering phenomena. This phenomenon opens new ways to overcome current limitations of graphene-based devices through the fabrication of chemically doped graphene nanoribbons with sizes within the reach of conventional lithography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call