Abstract

Second-harmonic light scattering (SHS) permits characterization of membrane-specific molecular transport in living cells. Herein, we demonstrate the use of time-resolved SHS for quantifying chemically induced enhancements in membrane permeability. As proof of concept, we examine the enhanced permeability of the cytoplasmic membrane in living Escherichia coli following addition of extracellular adenosine triphosphate (ATPe). The transport rate of the hydrophobic cation, malachite green, increases nearly an order of magnitude following addition of 0.1 mM ATPe. The absence of an ATPe-enhanced permeability in liposomes strongly suggests the induced effect is protein-mediated. The utility of SHS for elucidating the mechanism of action of antimicrobials is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call