Abstract

Blast furnace slag (BFS) is a latent hydraulic material similar in composition to Portland cement. BFS was originally studied for mud to cement (MTC) purposes. This application called for large quantities of BFS (40–500 ppb (lb/bbl)) and ultimately proved to be ineffective. Subsequently, BFS has been investigated as an additive in drilling fluids. In a recent study, muds containing additive-level concentrations (5–30 lb/bbl) of BFS were shown to be effective in reducing formation damage. The present work extends the investigation of BFS as a drilling fluid additive. Specifically, we have explored the use of chemical reagents to activate the BFS in filter cakes to achieve cakes that are thin, impervious and firm. Filter cakes were formed from slag-laden drilling fluids in a high-pressure, high-temperature reverse filtration apparatus (permeability plugging apparatus). Studies were conducted with partially hydrolyzed polyacrlyamide (PHPA) muds and CaCO3-based fluids containing different loadings of BFS. Filter cakes of these fluids were treated with several different activators and the results were compared to cakes containing no BFS. Different activation techniques were investigated and a novel device was designed to measure the strength of the filter cakes. An environmental scanning electron microscope examined the relationship between the structural features of the activated cakes and their strengths. This study demonstrates that filter cakes containing BFS can be chemically activated to produce thin, firm cakes with improved filtration properties. These cakes should be able to form better bonds with cement subsequently used for completion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call