Abstract

In this study, surface modification is used to improve the compatibility of Kenaf fibers (KFs) and multi-walled carbon nanotubes (MWCNTs) in a polylactic acid (PLA) matrix, as well as to enhance the mechanical properties. Through the use of a silane coupling agent, the KF is grafted with functional groups to generate a chemical bond with the PLA; the modified KF shows high compatibility in the PLA matrix. Compared to the bare PLA, the optimal KF/MWCNT/PLA composite (PC1F30-OX) shows increases of 58% in tensile strength, and 113% in impact strength. A small addition of MWCNTs (1 wt%) dramatically improves the antistatic ability by lowering the surface resistance to 3.47 GΩ. With the addition of hydrophilic KF into the PLA, the composite becomes much more environmentally friendly, and the biodegradation rate can be controlled by the amount of KF added. The addition of hydrophilic KF allowed the composite to accommodate more enzyme to hasten the biodegradation; almost complete decomposition occurred after 11 weeks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call