Abstract

Oxidative dehydrogenation of propane (ODHP) is a promising technique for producing propene due to its low operative temperature and coke-resistant feature. Recently, boron-based catalysts have been widely investigated for ODHP owing to their brilliant performance. Herein, we report that boron in the form of nanosheets can be prepared feasibly by exfoliating layered MgB2 with hydrochloric acid, and can efficiently and stably catalyze ODHP. At 530 °C, the catalyst exhibits propene and ethene selectivities as high as 63.5% and 18.4%, respectively, at a 40% propane conversion. The olefin productivity reaches 2.48 golefin gcat-1 h-1, superior to the commercial h-BN and other reported boron-based catalysts. Even after testing for 100 h at 530 °C, the catalyst still maintains excellent stability. This work expands the effective boron-based catalyst family for ODHP and demonstrates the great potential of the new type of 2D material-boron nanosheet for energy and catalytic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call