Abstract
Nanoparticles are widely used in various biomedical applications as drug delivery carriers, imaging probes, single-molecule tracking/detection probes, artificial chaperones for inhibiting protein aggregation, and photodynamic therapy materials. One key parameter of these applications is the ability of the nanoparticles to enter into the cell cytoplasm, target different subcellular compartments, and control intracellular processes. This is particularly the case because nanoparticles are designed to interact with subcellular components for the required biomedical performance. However, cells are protected from their surroundings by the cell membrane, which exerts strict control over entry of foreign materials. Thus, nanoparticles need to be designed appropriately so that they can readily cross the cell membrane, target subcellular compartments, and control intracellular processes.In the past few decades there have been great advancements in understanding the principles of cellular uptake of foreign materials. In particular, it has been shown that internalization of foreign materials (small molecules, macromolecules, nanoparticles) is size-dependent: endocytotic uptake of materials requires sizes greater than 10 nm, and materials with sizes of 10-100 nm usually enter into cells by energy-dependent endocytosis via biomembrane-coated vesicles. Direct access to the cytosol is limited to very specific conditions, and endosomal escape of material appears to be the most practical approach for intracellular processing.In this Account, we describe how cellular uptake and intracellular processing of nanoscale materials can be controlled by appropriate design of size and surface chemistry. We first describe the cell membrane structure and principles of cellular uptake of foreign materials followed by their subcellular trafficking. Next, we discuss the designed surface chemistry of a 5-50 nm particle that offers preferential lipid-raft/caveolae-mediated endocytosis over clathrin-mediated endocytosis with minimum endosomal/lysosomal trafficking or energy-independent direct cell membrane translocation (without endocytosis) followed by cytosolic delivery without endosomal/lysosomal trafficking. In particular, we emphasize that the zwitterionic-lipophilic surface property of a nanoparticle offers preferential interaction with the lipid raft region of the cell membrane followed by lipid raft uptake, whereas a lower number of affinity biomolecules (<25) on the nanoparticle surface offers caveolae/lipid-raft uptake, while an arginine/guanidinium-terminated surface along with a size of <10 nm offers direct cell membrane translocation. Finally, we discuss how nanoprobes can be designed by adapting these surface chemistry and size preference principles so that they can readily enter into the cell, label different subcellular compartments, and control intracellular processes such as trafficking kinetics, exocytosis, autophagy, amyloid aggregation, and clearance of toxic amyloid aggregates. The Account ends with a Conclusions and Outlook where we discuss a vision for the development of subcellular targeting nanodrugs and imaging nanoprobes by adapting to these surface chemistry principles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.