Abstract

Although Li-ion batteries have attracted significant interest due to their higher energy density, lack of high rate performance electrode materials and intrinsic safety issues challenge their commercial applications. Herein, we demonstrate a simple photocatalytic reduction method that simultaneously reduces graphene oxide (GO) and anchors (010)-faceted mesoporous bronze-phase titania (TiO2-B) nanosheets to reduced graphene oxide (RGO) through Ti(3+)-C bonds. Formation of Ti(3+)-C bonds during the photocatalytic reduction process was identified using electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) techniques. When cycled between 1-3 V (vs Li(+/0)), these chemically bonded TiO2-B/RGO hybrid nanostructures show significantly higher Li-ion storage capacities and rate capability compared to bare TiO2-B nanosheets and a physically mixed TiO2-B/RGO composite. In addition, 80% of the initial specific (gravimetric) capacity was retained even after 1000 charge-discharge cycles at a high rate of 40C. The improved electrochemical performance of TiO2-B/RGO nanoarchitectures is attributed to the presence of exposed (010) facets, mesoporosity, and efficient interfacial charge transfer between RGO monolayers and TiO2-B nanosheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.